Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 53: 15, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1100921

RESUMO

BACKGROUND: Current South American populations trace their origins mainly to three continental ancestries, i.e. European, Amerindian and African. Individual variation in relative proportions of each of these ancestries may be confounded with socio-economic factors due to population stratification. Therefore, ancestry is a potential confounder variable that should be considered in epidemiologic studies and in public health plans. However, there are few studies that have assessed the ancestry of the current admixed Chilean population. This is partly due to the high cost of genome-scale technologies commonly used to estimate ancestry. In this study we have designed a small panel of SNPs to accurately assess ancestry in the largest sampling to date of the Chilean mestizo population (n = 3349) from eight cities. Our panel is also able to distinguish between the two main Amerindian components of Chileans: Aymara from the north and Mapuche from the south. RESULTS: A panel of 150 ancestry-informative markers (AIMs) of SNP type was selected to maximize ancestry informativeness and genome coverage. Of these, 147 were successfully genotyped by KASPar assays in 2843 samples, with an average missing rate of 0.012, and a 0.95 concordance with microarray data. The ancestries estimated with the panel of AIMs had relative high correlations (0.88 for European, 0.91 for Amerindian, 0.70 for Aymara, and 0.68 for Mapuche components) with those obtained with AXIOM LAT1 array. The country's average ancestry was 0.53 ± 0.14 European, 0.04 ± 0.04 African, and 0.42 ± 0.14 Amerindian, disaggregated into 0.18 ± 0.15 Aymara and 0.25 ± 0.13 Mapuche. However, Mapuche ancestry was highest in the south (40.03%) and Aymara in the north (35.61%) as expected from the historical location of these ethnic groups. We make our results available through an online app and demonstrate how it can be used to adjust for ancestry when testing association between incidence of a disease and nongenetic risk factors. CONCLUSIONS: We have conducted the most extensive sampling, across many different cities, of current Chilean population. Ancestry varied significantly by latitude and human development. The panel of AIMs is available to the community for estimating ancestry at low cost in Chileans and other populations with similar ancestry.


Assuntos
Humanos , Masculino , Feminino , Etnicidade/genética , Indígenas Sul-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Grupos Populacionais/genética , Genética Populacional/organização & administração , Saliva , Marcadores Genéticos/genética , Chile , Filogeografia , Técnicas de Genotipagem , Frequência do Gene/genética , Genótipo
2.
Biol. Res ; 50: 38, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1038780

RESUMO

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains and consequently is prone to modification by chromosomal rearrangements. We have shown that nuclear architecture is modified in spermatocytes of Robertsonian (Rb) homozygotes of Mus domesticus. In this study we analyse the synaptic configuration of the quadrivalents formed in the meiotic pro- phase of spermatocytes of mice double heterozygotes for the dependent Rb chromosomes: Rbs 11.16 and 16.17. RESULTS: Electron microscope spreads of 60 pachytene spermatocytes from four animals of Mus domesticus 2n = 38 were studied and their respective quadrivalents analysed in detail. Normal synaptonemal complex was found between arms 16 of the Rb metacentric chromosomes, telocentrics 11 and 17 and homologous arms of the Rb metacentric chromosomes. About 43% of the quadrivalents formed a synaptonemal complex between the heterologous short arms of chromosomes 11 and 17. This synaptonemal complex is bound to the nuclear envelope through a fourth synapsed telomere, thus dragging the entire quadrivalent to the nuclear envelope. About 57% of quadrivalents showed unsynapsed single axes in the short arms of the telocentric chromosomes. About 90% of these unsynapsed quadrivalents also showed a telomere-to-telomere association between one of the single axes of the telocentric chromosome 11 or 17 and the X chromosome single axis, which was otherwise normally paired with the Y chromosome. Nucleolar material was associated with two bivalents and with the quadrivalent. CONCLUSIONS: The spermatocytes of heterozygotes for dependent Rb chromosomes formed a quadrivalent where four chromosomes are synapsed together and bound to the nuclear envelope through four telomeres. The nuclear configuration is determined by the fourth shortest telomere, which drags the centromere regions and heterochromatin of all the chromosomes towards the nuclear envelope, favouring the reiterated encounter and eventual rearrangement between the heterologous chromosomes. The unsynapsed regions of quadrivalents are frequently bound to the single axis of the X chromosome, possibly perturbing chromatin condensation and gene expression.


Assuntos
Animais , Masculino , Camundongos , Espermatócitos/fisiologia , Espermatócitos/ultraestrutura , Cromossomo X/fisiologia , Cromossomo Y/fisiologia , Complexo Sinaptonêmico/fisiologia , Nucléolo Celular/fisiologia , Translocação Genética , Cromossomo X/genética , Cromossomo Y/genética , Complexo Sinaptonêmico/genética , Heterocromatina/fisiologia , Heterocromatina/genética , Nucléolo Celular/genética , Telômero/fisiologia , Telômero/genética , Prófase Meiótica I/fisiologia , Prófase Meiótica I/genética , Heterozigoto
3.
Biol. Res ; 47: 1-13, 2014. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-950712

RESUMO

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. RESULTS: In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. CONCLUSIONS: The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.


Assuntos
Animais , Masculino , Camundongos , Espermatócitos/ultraestrutura , Núcleo Celular/genética , Cromossomos de Mamíferos/ultraestrutura , Prófase Meiótica I , Frações Subcelulares , Heterocromatina , Sondas Moleculares , Núcleo Celular , Ultrassonografia , Hibridização in Situ Fluorescente , Estágio Paquíteno , Heterozigoto , Homozigoto
4.
Biol. Res ; 43(3): 275-285, 2010. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-571988

RESUMO

Understanding the spatial organization of the chromosomes in meiotic nuclei is crucial to our knowledge of the genome's functional regulation, stability and evolution. This study examined the nuclear architecture of Mus domesticus 2n=40 pachytene spermatocytes, analyzing the associations among autosomal bivalents via their Centromere Telomere Complexes (CTC). The study developed a nuclear model in which each CTC was represented as a 3D computer object. The probability of a given combination of associations among CTC was estimated by simulating a random distribution of 19 indistinguishable CTC over n indistinguishable "cells" on the nuclear envelope. The estimated association frequencies resulting from this numerical approach were similar to those obtained by quantifying actual associations in pachytene spermatocyte spreads. The nuclear localization and associations of CTC through the meiotic prophase in well-preserved nuclei were also analyzed. We concluded that throughout the meiotic prophase: 1) the CTC of autosomal bivalents are not randomly distributed in the nuclear space; 2) the CTC associate amongst themselves, probably at random, over a small surface of the nuclear envelope, at the beginning of the meiotic prophase; 3) the initial aggregation of centromere regions occurring in lepto-zygotene likely resolves into several smaller aggregates according to patterns of preferential partitioning; 4) these smaller aggregates spread over the inner face of the nuclear envelope, remaining stable until advanced stages of the meiotic prophase or even until the first meiotic division.


Assuntos
Animais , Masculino , Camundongos , Núcleo Celular/ultraestrutura , Cromossomos de Mamíferos/ultraestrutura , Espermatócitos/ultraestrutura , Centrômero/ultraestrutura , Modelos Biológicos , Prófase Meiótica I/fisiologia , Membrana Nuclear/ultraestrutura , Telômero/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA